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Abstract

Interior permanent magnet motors are commonly used as traction motors for au-
tomobiles because they are power–dense and very efficient. IPMs have permanent
magnets buried in a ferromagnetic rotor, which allows for very effective field weak-
ening. Field weakening allows the motor to maintain maximum output power over a
wide range of motor speeds, which is desirable in traction motors because it means
no transmission is required for the motor to perform optimally. The Hyundai Sonata
alternator motor is an interior permanent magnet motor designed for charging the hy-
brid car battery through regenerative braking. In order to design a motor controller
for this motor, I wanted to accurately simulate the motor dynamics. The motor model
that I developed did not take into account saturation because of the large currents
required to start saturating the magnetic materials int his motor.

1 Motor modeling

Interior permanent magnets function like a switched reluctance motor with permanent mag-
nets embedded in the rotor. There are two mechanisms for torque production: permanent
magnet torque and reluctance torque. The permanent magnets in the motor have high co-
ercivity, so the field produced by the magnets is roughly the same regardless of the current
through the motor. However, since µmagnet � µsteel, the holes left by the magnets in the
rotor act similarly to air gaps, causing the reluctance to vary with rotor position.

Labelling the phases u, v, w, we can model the currents through the motor as Iuvw, and the
flux linkage as Λuvw. Assuming that all magnetic materials have constant µ (over the range
of currents we are using), we can model

Λuvw = Luvw(θ)Iuvw + Ψuvw(θ).

Note that Luvw =

Luu Luv Luw
Lvu Lvv Lvw
Lwu Lwv Lww

, and Λuvw, Iuvw, and Ψuvw are vectors.

Using three phases to model the motor behavior has some serious drawbacks. Since the net
current through the motor is zero, this three phase model has an extra degree of freedom since
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Iu+Iv+Iw = 0. The solution to this problem is the Clarke transform, also known as the αβγ
transform. The Clarke transform maps three phase currents or voltages to two orthogonal
components with a 90◦, rather than three components with a 120◦ phase difference.

The Clarke transform matrix and its inverse can be written as
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Iαβ = TIuvw, and similarly for Λ and Ψ. For inductance, we can write Lαβ = TLuvwT−1

and similarly, Luvw = T−1LαβT.

Furthermore, we can apply the Park transform (also known as the DQ0 transform). When
neglecting the phase–independent current (which is zero in a three phase motor), the Park

transform KP (θ) = R(−θ), where R =

(
cos θ − sin θ
sin θ cos θ

)
is the standard rotation matrix in

two dimensions.

This has the effect of giving Idq = KP Iαβ and Ldq = KPLαβK
T
P .

The Park transform has the effect of translating currents and voltages to the rotor frame
of view, which is objectively useful when controlling the motor. In particular Iq roughly
corresponds to the torque through the motor and Id corresponds to the amount of field
weakening.

The phase voltages of the motor are

Vuvw = RIuvw +
d

dt
Λuvw = RIuvw + L′uvwIuvw + LuvwI′uvw + Ψ′uvw,

or in the αβ frame,

Vαβ = RIαβ +
d

dt
Λαβ = RIαβ + L′αβIαβ + LαβI

′
αβ + Ψ′αβ.

The dq frame is slightly more difficult, because the Park transform has a nonzero time

derivative. Specifically, K′P = ω

(
0 1
−1 0

)
KP = ωR−90◦KP and (KT

P )′ = ω

(
0 −1
1 0

)
KT
P =

ωR90◦K
T
P .

Substituting and simplifying gives

Vdq = RIdq + ωR90◦(LdqIdq + Ψdq) + LdqI
′
dq + L′dqIdq + Ψ′dq.

We can further simplify matters by ignoring saturation, non–sinusoidal flux linkage, and
angle-dependent Ldq to give

Vdq = RIdq + ωR90◦(LdqIdq + Ψdq) + LdqI
′
dq.
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2 Measurement procedure

In order to model the motor effectively, I needed the flux through the motor as a function of
rotor angle and α and β phase currents. The easiest way to do this without painfully stepping
through measurements taken at different angles was to spin the motor with a drill and inject
a 5 Vpp 2 kHz sinusoidal signal into the motor. Injecting this signal in the motor at two
different angles and probing the outputs of the motor with the oscilloscope was sufficient to
obtain both the back emf of the motor and the α and β inductances, albeit with a substantial
amount of signal processing. Figure 1 shows a diagram of the experimental setup. The signal
generators are set in phase to generate a sinusoid aligned with only α voltage applied and
set out of phase to generate a sinusoid with only β voltage. All three output terminals of
the motor are monitored with the oscilloscope.

Figure 1: The output impedance of the signal generator is 50 Ω.

3 Analysis

The voltages observed at the motor terminals were fed into a Clarke transform to get α and β
voltages. Low pass filtering gives the back-emf and bandpass filtering around 2 kHz isolates
the injected high frequency signal used to measure inductance. The electrical frequency of
the motor can be obtained by finding zero crossings in the filtered back-emf and extracting
one period. The permanent magnet–induced flux linkage can be obtained by integrating the
back-emf over one period.

Finding the inductance matrix as a function of rotor angle is more complicated. Here, the
bandpass filtered α and β voltages are multiplied by cos

(
2000t
2π

)
and sin

(
2000t
2π

)
and then
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low pass filtered, acting as a quadrature demodulator. This has the useful feature of being
able to describe the α and β voltages as Vc(t) cos

(
2000t
2π

)
+ Vs(t) sin

(
2000t
2π

)
. Integrating these

orthogonal components to obtain flux linkage is very simple and numerically stable with
this representation. In addition, we can extract α and β currents from the phase voltages
and knowledge that all terminals of the motor have a 50 Ω impedance. Running the signal
generators in phase, Iα = Iu = −Vu/50 Ω and Iβ = −Vβ/50 Ω. Running the signal generators
out of phase, Iα = −Vα/50 Ω. Iβ is a bit more tricky to calculate for running the signal
generators out of phase. When Iα is zero, Lαβ is zero because Lα is undriven, and Iβ is 90◦

out of phase with Vβ because Lβ acts like a pure inductor. Since we know the amplitude
of Vβin , we can calculate the phase difference between the input voltage and the measured
voltage, allowing us to calculate Iβ = (Vβin − Vβ)/50 Ω.

We can write (
λα1 λα2 · · ·
λβ1 λβ2 · · ·

)
=

(
Lα Lαβ
Lαβ Lβ

)(
Iα1 Iα2 · · ·
Iβ1 Iβ2 · · ·

)
,

which gives (
Lα Lαβ
Lαβ Lβ

)
=

(
λα1 λα2 · · ·
λβ1 λβ2 · · ·

)(
Iα1 Iα2 · · ·
Iβ1 Iβ2 · · ·

)+

,

where A+ is the Moore–Penrose pseudoinverse of A.

Figures 2, 3, and 4 display the measured motor characteristics. The Q and D inductances
differ by a factor of 3 or so, which allows the motor to generate reluctance torque.

The method for measuring the motor was far from perfect, but it provided a good reference
point for the properties of the motor. A possible improvement to the measurement method
would be to accurately track the reference input signal. This could be achieved by using an
oscilloscope function generator, rather than the independent unit I used. Another strategy
could be to increase the resistance in series with the motor phases and increase the excita-
tion frequency. This strategy has the disadvantage of inducing more eddy currents in the
laminations of the motor, possibly resulting in flawed measurements.

The most reliable strategy for measuring motor characteristics is to use a motor controller
to spin the motor at different speeds with different Q and D currents. This method has
the advantage of being able to take good measurements with the motor in saturation, be-
cause the motor controller is capable of pushing enough current through the motor that
the stator teeth and rotor start to saturate. Measuring motor characteristics in saturation
is extremely useful because the motor will saturate when it is outputting large amounts of
power. These measurements can be used to optimize the performance of the motor when it
actually matters—when the motor is under load.

A Analysis code

This code was put together to analyze scope traces and attempt to find the motor flux linkage
and Q and D inductances with respect to electrical phase angle.
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Figure 2: Measured flux and back emf. The back emf is slightly bumpy, probably due to the
shape of the distributed windings.
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Figure 3: Measured alpha and beta inductance. Alpha and beta inductance vary somewhat
sinusoidally with phase angle.
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Figure 4: Measured Q and D inductance. The inductance in phase with the rotor is sub-
stantially lower than the inductance 90◦ out of phase. This difference in inductance is useful
for generating reluctance torque.
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import numpy as np

import scipy.signal

from numpy import genfromtxt

import matplotlib.pyplot as plt

import os

filename0 = 'scope_captures/RigolDS0.csv'

filename1 = 'scope_captures/RigolDS1.csv'

dt = 5e-7

# applies a filter to an fft

def bandpass(arr, coeff, offset=0):

arr *= np.exp(-((np.arange(arr.shape[-1])-offset)/coeff)**2)

clarke = 1/3 * np.array([[2, -1, -1], [0, np.sqrt(3), -np.sqrt(3)]])

# extract 2 khz and low frequency components of the measured signals

# extract exactly one cycle

def get_waveforms(filename):

x = genfromtxt(filename, delimiter=',')

t = x[1:, 0]

uvw = x[1:, 1:].transpose()

dt = 5e-7

uvw_fft = np.fft.rfft(uvw)

uvw_emf_fft = uvw_fft.copy()

bandpass(uvw_emf_fft, 250, 0)

uvw_ind_fft = uvw_fft.copy()

bandpass(uvw_ind_fft, 250, 1000)

uvw_emf = np.fft.irfft(uvw_emf_fft)

uvw_ind = np.fft.irfft(uvw_ind_fft)

ab_emf = clarke @ uvw_emf

zero_cross = np.arange(len(t)-1)[np.diff(np.sign(ab_emf[0, :])) < 0]

t_start = zero_cross[3]

t_end = zero_cross[4]

r = range(t_start, t_end)

return t[r], ab_emf[:, r], uvw_ind[:, r]

# determine real and imaginary parts of high frequency injected signals

def quadrature_demodulate(sig):

N = sig.shape[-1]

D_ax = np.cos(np.arange(N)*2000*dt*(2*np.pi))

Q_ax = np.sin(np.arange(N)*2000*dt*(2*np.pi))
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D_ind = 2 * D_ax * sig

Q_ind = 2 * Q_ax * sig

D_ind_fft = np.fft.rfft(D_ind)

bandpass(D_ind_fft, 100, 0)

D_ind = np.fft.irfft(D_ind_fft)

Q_ind_fft = np.fft.rfft(Q_ind)

bandpass(Q_ind_fft, 100, 0)

Q_ind = np.fft.irfft(Q_ind_fft)

return D_ind, Q_ind

# calculate Q and D inductances

def calculate_inductances(uvw_ind0, uvw_ind1):

Duvw0, Quvw0 = quadrature_demodulate(uvw_ind0)

Duvw1, Quvw1 = quadrature_demodulate(uvw_ind1)

N = 2**16

Duvw0 = scipy.signal.resample(Duvw0, N, axis=1)

Quvw0 = scipy.signal.resample(Quvw0, N, axis=1)

Duvw1 = scipy.signal.resample(Duvw1, N, axis=1)

Quvw1 = scipy.signal.resample(Quvw1, N, axis=1)

Dab0 = clarke @ Duvw0

Qab0 = clarke @ Quvw0

Dab1 = clarke @ Duvw1

Qab1 = clarke @ Quvw1

R = 50

w = 2000*np.pi*2

DIa0 = -Duvw0[0, :] / R

QIa0 = -Quvw0[0, :] / R

DIb0 = -Dab0[1, :] / R

QIb0 = -Qab0[1, :] / R

DIa1 = -Dab1[0, :] / R

QIa1 = -Qab1[0, :] / R

b1_voltage = 5 * 2*np.sqrt(3)/3 / (2*np.sqrt(2))

b1_init_mag = np.sqrt(Dab1[1, 0]**2 + Qab1[1, 0]**2)

phase_offset_b1 = np.arccos(b1_init_mag / b1_voltage)
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print(b1_voltage)

print(b1_init_mag)

print(phase_offset_b1)

DVin1 = b1_voltage * (Dab1[1, 0] * np.cos(phase_offset_b1) \

- Qab1[1, 0] * np.sin(phase_offset_b1))

QVin1 = b1_voltage * (Qab1[1, 0] * np.cos(phase_offset_b1) \

+ Dab1[1, 0] * np.sin(phase_offset_b1))

DIb1 = (DVin1-Dab1[1, :]) / R

QIb1 = (QVin1-Qab1[1, :]) / R

Dfluxab0 = -Qab0 / w

Qfluxab0 = Dab0 / w

Dfluxab1 = -Qab1 / w

Qfluxab1 = Dab0 / w

Lab = np.zeros((N, 2, 2))

park = np.zeros((N, 2, 2))

theta = np.arange(N)*2*np.pi/N

for i in range(N):

lam = np.array([Dfluxab0[:, i], Qfluxab0[:, i], \

Dfluxab1[:, i], Qfluxab1[:, i]]).transpose()

cur = np.array([[DIa0[i], QIa0[i], DIa1[i], QIa1[i]], \

[DIb0[i], QIb0[i], DIb1[i], QIb1[i]]])

Lab[i, :, :] = lam @ np.linalg.pinv(cur)

Lab[i, :, :] = 0.5 * (Lab[i, :, :] + Lab[i, :, :].transpose())

park[i, :, :] = [[np.cos(theta[i]), np.sin(theta[i])], \

[-np.sin(theta[i]), np.cos(theta[i])]]

Ldq = park @ Lab @ np.linalg.inv(park)

return theta, Lab, Ldq

# Plotting everything!

plt.ion()

t0, ab_emf0, uvw_ind0 = get_waveforms(filename0)

t1, ab_emf1, uvw_ind1 = get_waveforms(filename1)

ab_flux0 = np.cumsum(ab_emf0, axis=1)*dt

ab_flux0 -= np.mean(ab_flux0, axis=1).reshape((-1, 1))

angle = np.linspace(0, 2*np.pi, len(t0), endpoint=False)
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ab_ind0 = clarke @ uvw_ind0

ab_ind1 = clarke @ uvw_ind1

fig, ax = plt.subplots(2, 1)

ax[0].plot(t0, ab_emf0[0, :], label='alpha back emf')

ax[0].plot(t0, ab_emf0[1, :], label='beta back emf')

ax[0].legend()

ax[0].set_xlabel("Time")

ax[0].set_ylabel("Back emf (V)")

ax[0].set_title("Back emf vs time")

ax[1].plot(angle, ab_flux0[0, :], label = 'alpha flux linkage')

ax[1].plot(angle, ab_flux0[1, :], label = 'beta flux linkage')

ax[1].legend()

ax[1].set_xlabel("Angle")

ax[1].set_ylabel("Flux Linkage (Vs)")

ax[1].set_title("Flux linkage vs angle")

theta, Lab, Ldq = calculate_inductances(uvw_ind0, uvw_ind1)

fig, ax = plt.subplots(3, 1)

ax[0].plot(theta, 1000*Lab[:, 0, 0])

ax[1].plot(theta, 1000*Lab[:, 1, 0])

ax[2].plot(theta, 1000*Lab[:, 1, 1])

ax[0].set_ylabel("Inductance (mH)")

ax[1].set_ylabel("Inductance (mH)")

ax[2].set_ylabel("Inductance (mH)")

ax[0].set_title("Alpha inductance vs angle")

ax[1].set_title("Alpha-beta mutual inductance vs angle")

ax[2].set_title("Beta inductance vs angle")

fig, ax = plt.subplots(3, 1)

ax[0].plot(theta, 1000*Ldq[:, 0, 0])

ax[1].plot(theta, 1000*Ldq[:, 1, 0])

ax[2].plot(theta, 1000*Ldq[:, 1, 1])

ax[0].set_ylabel("Inductance (mH)")

ax[1].set_ylabel("Inductance (mH)")

ax[2].set_ylabel("Inductance (mH)")

ax[0].set_title("D inductance vs angle")

ax[1].set_title("Q-D mutual inductance vs angle")

ax[2].set_title("Q inductance vs angle")
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plt.show()
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