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Our mess of a test bench 

 
We designed an FPGA implementation of Field Oriented Control (FOC) for brushless 

motors.  An FPGA is perfect for controlling a brushless motors because it allows complex 
control loops with substantial amounts of digital processing to execute at high frequency and low 
latency. Our motor controller implemented field-oriented control---an advanced digital control 
strategy for driving various types of multiphase motors.  FOC is designed to efficiently control 
the current through a multiphase motor without having to run the control loop extremely 
aggressively.  Our FPGA implementation of FOC required us to run the FOC control loop at 
least at several kilohertz, and possibly faster for better performance.  Our software design had to 
implement coordinate transforms to translate the measured phase currents into the rotor’s 
reference frame, as well as providing a UART for communication with a computer, switching 
logic to control the inverter, and modules to interpret data from the peripheral ADCs and 
encoder.  On the hardware side, we designed PCBs to provide a clean interface between the 



CMOD A7 3.3V logic and the Prius inverter 12V logic, as well as providing current sensors and 
a variable reluctance resolver decoder.  The combined challenges of designing a good hardware 
interface as well as good software interfaces for peripheral hardware and a clean control loop 
made our motor controller a very difficult project.  With the UART interface working, we were 
able to demonstrate that our design could spin the motor with a very substantial amount of 
torque, as well as effectively field weakening the motor to make it spin faster at a low bus 
voltage. 

 
Brushless motors are three phase synchronous permanent magnet motors that require 

electronic commutation.  The lack of mechanical contacts is advantageous for weight and 
longevity, but they require complex control electronics.  There are many different methods for 
controlling brushless motors, and one of the most useful methods is field oriented control, or 
FOC.  FOC is a control strategy that controls the phase and magnitude of the currents through the 
three phases of the motor.  Specifically, the three observed motor phase currents are 
mathematically transformed into currents directly in phase with the motor’s electrical angle (D 
current) and in quadrature with the motor’s electrical angle (Q current).  In an ideal electric 
motor with no rotor reluctance, we only want Q current to be nonzero.  By changing D and Q 
voltages, we can do an inverse transform to get the target voltages for each motor phase.  These 
voltages are used to generate PWM signals on each motor phase, with these PWM signals 
optimized to avoid excessive switching. 

 
FOC is an extremely powerful motor control strategy.  One advantage of FOC is that the 

control loop for FOC can be run substantially slower than other similar control strategies because 
the Q and D currents are relatively slow to change, even with a rapidly spinning motor.  FOC can 
be easily adapted to induction motors, as well as motors with nonzero reluctance torque.  With 
knowledge of motor parameters, sensorless control of the motor can be integrated into FOC. 
FOC also gives accurate torque control of the motor, enabling a brushless motor to be used as a 
servomotor. 
 

Hardware Details 
 
To have a physical platform to test on, we needed some hardware. We decided to use the 

inverter module out of a Gen2 Toyota Prius and an interior permanent magnet (IPM) motor from 
a Hyundai Sonata hybrid. Both of these parts greatly simplified the hardware work we would 
need to do, as both are quite simple to use, with minimal external components required on the 



custom PCB motherboard to interface with our FPGA. As for our FPGA, we opted to the CMOD 
A7-35T breadboardable Artix-7 breakout board. It wasn’t particularly expensive, had enough of 
the required pins, and importantly was small enough to mount on a pcb. 

 
The Prius inverter has a simple pinout, with three 12v digital lines to control the fully 

isolated gate drivers, and two -12v to 12v analog lines representing two phase currents, along 
with a variety of other miscellaneous lines for things like enable, temperature feedback, etc. We 
used a 3.3v to 12v logic level shifter to drive the gate control lines from the FPGA. For 
converting the +-12v analog current sense signals to something the FPGA could read, we 
designed a differential amplifier circuit which scaled the +-12v to a +3.3v to 0.0v signal, for our 
3.3v high frequency SAR ADC’s to convert. Our ADC’s read out the converted signals onto a 
three wire SPI interface. To make the most out of our current sense ADC’s bandwidth, we gave 
each ADC their own SPI bus. The rest of the ADC’s (for converting temperature and bus voltage 
signals) shared a common SPI bus, as they were less critical than those used to control the motor.  

 

 
Left: Prius power electronics module 

Right: Inverter module with isolated gate drive and current sense 
 

The IPM motor had it’s three phase power connections which bolted directly to the 
inverter, and a 10 pin connector, six for the variable reluctance resolver for rotor position 
measurement, two for the motor winding thermistor, and two redundant connections for chassis 
grounding. We reterminated this connector into a DB9 connector, and layed out a smaller 
sub-board for a $20 IC for resolver-to-digital conversion. It worked by exciting a 20khz signal 
across one coil of the variable reluctance resolver, and then observing the resulting signals across 
the two other coils, who’s amplitudes would vary depending on the rotary position of the motor, 
due to the position dependant inductive coupling between the excitation coil and either of the 
observer coils. The IC handled all of these functions, producing either a position or velocity 



measurement over the SPI bus, depending on the state of a control line. Unfortunately this IC 
only operates using 5v logic, so this chip also required a logic level converter. We ended up 
using two level shifters, one for outgoing signals and another for incoming signals. 
 

 
Left : the backside of the motor, with the variable reluctance resolver shown 

Right: The Resolver to Digital converter board we designed 
 

To implement all the various circuits to run the device, we designed two separate boards, 
one for the resolver-to-digital IC and it’s peripheral circuitry, and one main board (motherboard) 
which supports the FPGA, and implements the power regulators and communication level 
converters required to operate the rest of the systems. We designed them in EAGLE PCB, on a 
two layer board. We then had them fabricated by 3PCB, a chinese boardhouse with extremely 
fast turnaround times. 
 



 
Left: Motherboard board render 

Right: Resolver to digital converter board render 
 
 

 
Current sense feedback scalers and SAR 

ADCs 

 
Voltage and temperature feedback scaling 
and sampling, 12 volt logic level shifting 



 
CMOD board broken out, and some logic 

level attenuating circuits for inverter signals 

 
Connector pinouts, power supply regulators, 
and logic level shifting for the R/D converter. 

EAGLE schematic for the motherboard 
 

Unfortunately, once we had the resolver to digital board built up and started testing it, we 
discovered that the IC didn’t seem to be operating. Probing the various signals like the excitation 
pins and the crystal oscillator revealed that the IC wasn’t doing anything. We did some sifting 
through the datasheet, but we weren’t able to determine what was wrong. On the edge connector 
pinout, the 5v and 12v supplies were right next to each other, and we suspect that we might have 
accidentally tapped the 12v against the 5v rail, which would likely have killed the IC.  
 

 
Resolver decoder board schematic 



 
To get our project running, we really needed positional feedback. In theory, it is possible 

to operate the motor without sensor feedback, but it is certainly not an easy thing to do with your 
very first motor controller, and is particularly difficult with the motor we are using. Lucky for us, 
Austin Brown, a friend who had done some previous work developing FOC based motor 
controls, offered to let us use one of his old motor + encoder rigs, which we promptly bent a 
piece of sheet metal for and mounted to the side of the motor, using duct-tape to couple the 
output shaft of our motor to the smaller motor on his testing rig.  
 

 
Austin’s radial flux magnetic encoder breakout board 

 
The encoder he was using was a radial flux magnetic encoder, which could detect the 

fields of a nearby magnet and deduce the direction of the magnetic field lines running in plane 
with the IC. The IC was in quadurature mode, meaning that it was spitting an A and a B signal, 
two square waves offset by 90 phase degrees. The frequency of this signal was proportional to 
the RPM, every falling or rising edge of either signal encoded a 1 unit move either forwards or 
backwards. This system has no way to represent absolute position, so the encoder included a 
third “i” signal, which would transition to a high state at a fixed position once per rotation. 
 

Software Details 
 



In order to implement the field oriented control algorithm, we needed to implement the 
Clarke and Park coordinate transforms in order to convert between three phase currents and 
voltages, and two phase voltages and currents in the stator and rotor reference frames.  The FOC 
control loops control Q and D current in the rotor reference frame, but Q and D currents and 
voltages are mathematical abstractions.  The Clarke (and inverse Clarke) transforms are 
implementable as matrix multiplication.  The structure of the Clarke transform matrix allows it to 
be optimized on an FPGA by substituting bit shift operations for multiplies, and the inverse 
Clarke transform was similarly optimized.  We were able to use only two multiply operations per 
Clarke (or inverse Clarke) transform. 

 
The Park transform maps voltages and currents from the stator reference frame to the 

rotor reference frame.  As such, applying the Park transform is equivalent to multiplying by a 
rotation matrix.  We were able to avoid generating this matrix in real life by using CORDIC. 
CORDIC is an algorithm for generating trigonometric functions with minimal hardware 
resources, using only bit shifts and addition.  In order to generate sines and cosines, CORDIC 
rotates the unit vector by angles arctan(1), arctan(½), arctan(¼), etc..  These rotation matrices 
can be scaled so that all elements are powers of two, allowing bit shifts to be substituted for 
multiplication.  CORDIC can also be used for rotating an entire vector, rather than just 
calculating sines and cosines.  This is achievable by substituting the unit vector for the target 
vector to be rotated.  Xilinx provides an IP block that implements CORDIC, so we wrote a 
wrapper around the Xilinx CORDIC IP block. 

 
One very useful feature we wrote for implementing our designs was a fixed point 

multiplication block.  Although this block was not very complicated, it allowed us to input 
integer and fractional bit depth for both the inputs and the output of the multiplier.  Having a 
module that elegantly handled fixed point multiplication greatly simplified the process for 
designing the rest of the controller, because we did not have to think about scaling integer 
multiplication every time we needed to perform a multiplication. 

 
We also implemented a noise-resistant UART transmitter and receiver in order to give 

commands to the motor controller from the computer and read internal data from the motor 
controller on the computer.  The noise-resistant receiver averaged the received values over one 
bit time interval in order to avoid flipping bits.  This noise rejection was especially important due 
to the electrical noise from the inverter, which would frequently result in receiver errors.  At a 
baud rate of 115200, one bit was approximately 868 clock cycles, so the UART receiver would 
average 868 samples to determine whether a one or zero was transmitted.  This averaging 



technique was also applied to detect the start bit of the transmission in order to prevent noise 
from falsely triggering the UART receiver.  With noise rejection, we were able to reliably 
command Q and D currents through the motor, which allowed us to effectively demonstrate field 
weakening in action. 

 
The UART transmitter was substantially simpler than the receiver, as it did not have to 

perform any noise filtering.  However, both ends of the UART transmitter and receiver had to 
function in a human--readable manner.  We wrote a module that would convert registers to their 
hexadecimal equivalent to transmit over the UART, as well a module that would string together 
multiple bytes and send them over the UART.  The UART receiver decoder had to perform the 
reverse function--inputting human commands and converting them into motor controller 
instructions.  We built a frontend for the motor controller that allowed us to input an operation 
select character followed by hexadecimal payload bits.  For instance, sending Q0400 over the 
UART would command a current of 15 amps (1 unit of current was roughly 14.6 mA) 90 degrees 
ahead of the rotor position, and IF800 would command -30 amps of D current (directly in phase 
with the rotor) for field weakening.  Invalid strings were automatically rejected by the receiver to 
avoid potentially dangerous outcomes, especially since the motor controller had the potential to 
output very large amounts of power. 

 
Field oriented control requires inputs to measure phase currents and rotor position.  The 

ADCs and resolver board communicated via a serial interface, which had to be implemented 
according to the datasheet timing specifications.  We used SAR ADCs for this project, which 
meant that the ADC would operate like a serial device by default, outputting the most significant 
bit of measurements first after a couple clock cycles.  Unfortunately, the resolver IC never 
worked properly, possibly due to damage while soldering or ESD damage, so we had to retrofit a 
quadrature encoder onto the motor with sheet metal and duct tape.  The encoder had a third 
channel that fired once per revolution to achieve absolute position.  In order to get absolute 
position from the encoder, we had to manually rotate the motor until the third channel of the 
encoder fired, at which point we could accurately fix the position.  We also disabled the motor 
until we had an absolute position fix from the encoder in order to prevent unpredictable behavior 
from the motor.  Unfortunately for our sanity, the encoder was a 4000-count encoder, rather than 
a 4096-count encoder, so our encoder count would not automatically roll over when we passed 
the zero point again.  In addition, our angles were all scaled such that a rotation of 360 degrees 
would not change the angle register, due to integer overflow.  In order to scale the 4000-count 
encoder to a 4096-count encoder, we added 3 extra steps per 128 measured steps.  This method 



was quite effective and only resulted in about two bits of accuracy lost, which was not a big deal 
in the grand scheme of things. 
 

To actually apply a three phase voltage to the motor, we used a special type of PWM 
generator called SVPWM. The first important part of SVPWM is that it synchronizes the 
switching of all three phases so that they are always symmetric and as overlapped as possible. It 
achieves this by using the three voltage setpoints (one per phase) as individual thresholds 
superimposed onto a triangle wave, and switches a given phase whenever the triangle wave 
crosses the corresponding threshold level. The other important part of SVPWM is that it can 
adjust the dc component of the three phase output to increase the peak-to-peak voltage of the 
output sinusoids higher than the DC bus voltage. This only works because the number of phases 
is odd. Imagining three sinusoids, at no point in time are any two sinusoids at their peak, and the 
inverter only ever needs to produce a differential voltage of ¾ of whatever the peak-to-peak 
voltages of the sinusoids is. Therefore, the inverter is capable of producing a three phases which 
are 4/3rds the voltage of vbus. To be able to do this, it is important that the three phases are 
switched synchronously, as we established SVPWM is able to do earlier.  

 
Our implementation of SVPWM uses an up/down counter to generate the triangle waves, 

which is driven by a clock multiply/divider that we wrote. Because the rate at which the triangle 
counter needs to be incremented is not evenly divisible by the clock frequency, we needed to be 
able to generate a clock which is capable of producing something like 5 output pulses every 6 
input clock edges (a factor of 5/6), for example. This was achieved by using a counter which is 
incremented by the numerator on every input clock pulse, and produces an output clock edge 
every time the counter counts up to the denominator. Once the counter has passed the 
denominator, a bit of logic executes which rolls over the counter, while retaining however much 
it has overcounted by.  

 

 
The fractional clock divider configured for, 2/3rds dividing 

input clock on top, output clock on bottom 
 



This clocking method was a reasonably elegant solution (so long as your only concerned 
with average frequency), though the implementation isn’t perfectly idiotproof. We should have 
implemented this functionality directly into the triangle wave generator, instead of using 
implementing a clock divider module and incrementing the triangle wave counter every clock 
edge of the clock divider, as it would have allowed for higher resolution and higher counter 
frequency. If we forget how the triangle wave generation mechanism worked and tried to 
increase the switching frequency later, we think we may run into a bug or two, but it works as is 
for now.  

 
The SVPWM module itself was designed to take three signed voltage levels, and output 

three high/low states for each output phase. The module was implemented about as you’d expect, 
utilizing a counter with the same bit width as the inputs, with combinatorial logic which switches 
direction when it reaches the endpoints. We did have to implement a couple important 
protections, the first being that the input voltages are only sampled at the top and bottom of the 
switching cycle. This way we don’t run into issues with the output being intermittently on and 
off if it’s updated in the middle of a pwm cycle. Unfortunately, we decided not to implement the 
DC offset shifting for SVPWM, as it was additional complexity that wasn’t required for the 
controller to be operational, and which would make the output waveforms more difficult to 
interpret. 

 

 
Two cycles of an SVPWM output in testbench, displaying the  

triangle wave generation and output pin states. 
 

Implementation details 
 

Our implementation was relatively lightweight and did not require the full area of the 
FPGA.  This makes sense because our application is not particularly parallelized--we mostly care 
about having very low latency for our feedback loop.  As such, we could have increased the 



clock frequency from 100 MHz to around 200 MHz without issue.  Power consumption was 
estimated to be around 300 mW maximum. 

 
The FPGA space utilization was fairly lightweight 

 

Challenges and Setbacks 
 

One major time sink was the actual PCB layout. While we have experience designing and 
laying out PCBs for projects in a short period of time, this board posed a few unforeseen and 
underestimated challenges. Firstly, while we mostly knew the pinout and behavior of the various 
Prius inverter signals, there were still a few unknown signals that we had to design the circuit to 
be flexible around. For example, the analog Vbus feedback line exhibited this very strange 0.5 
volt to 2 volt linear relationship to a vbus of 0v to 250v. Similarly, we had to design a flexible 
circuit for translating the digital signals from the inverter, as we weren’t sure what digital output 
standard the inverter implemented. 
 

The second was just the sheer number of signals that had to be organized and individually 
considered, and many more decisions had to be made than expected. Trying to work on a board 
and move things forward can be difficult with a handful of difficult decisions haven’t been made. 
A related great annoyance was that all of the devices we needed the FPGA to interface with ran 
different logic standards than the FPGA, so every interface needed logic level shifting. 

 
The third issue was that the resolver decoder pcb wasn’t going to be as easy as taking a 

known good board sending out for a couple copies like we thought it would be. Unfortunately, 
the original version of the board had quite a few important signals not routed that we hoped 
would be. This meant some amount of editing had to be done, and given that we didn’t have any 



of the libraries for the original parts and how messy the original schematic was, we ended up just 
rebuilding the board from scratch. 

 
One major annoyance with designing power electronics is the sheer amount of electrical 

noise generated by switching large amounts of current.  The Prius inverted connector came with 
a large ferrite bead, and we were able to successfully mitigate noise on the encoder leads by 
threading them through a ferrite bead.  However, even with using a fairly nice (presumably 
shielded) USB cable for the serial interface, we had to deal with substantial amounts of noise on 
the UART--enough that well over half of the signals we sent were corrupted.  This was 
objectively bad and somewhat unsafe, as having a reliable serial interface is important for 
controlling the motor.  We were able to solve the issue of UART noise by implementing an 
averaging filter over each bit, which drastically reduced the BER. 
 

Future plans 
 

One of the primary reasons we chose to build a sophisticated brushless motor controller 
for our project is that we have many practical uses for a powerful brushless motor controller that 
implements field oriented control.  We intend on continuing development of the motor controller 
into the future.  As is, our motor controller implements core functionality of a brushless motor 
controller running FOC--we can efficiently control the Q and D currents through the motor. 
However, we would like to make the motor controller more practical and usable for high power 
electric vehicles and other applications, as well as cleaning up the code for greater 
configurability and extensibility. 
 

Our current UART interface to the motor controller is effective, but somewhat primitive. 
It is capable of reliably sending simple commands to the motor, but it does not have any logging 
functionality.  We would like to be able to modify more operating parameters, such as PI 
controller gains, switching frequency, as well as additional motor functionality.  We would like 
to add a velocity control loop that wraps the current control loop, as well as built in lookup tables 
for optimal Q and D currents for any given speed-torque combination.  This will allow us to put 
the motor controller on a vehicle and run as efficiently as possible while still performing well. 
This increased functionality will require more serial interface options, so that we can configure 
the functionality on the fly.  We could also set defaults through the serial interface by accessing 
non-volatile memory.  Additional motor features also include safety features like overcurrent, 
undervoltage, and overtemperature lockouts. 



 
Another use for a high speed UART connection is logging data.  We should be able to 

trigger a logging interval, which would take high-speed measurements of motor parameters, store 
them in DRAM, and then output those measurements over the serial bus.  By changing logging 
parameters, we could easily harvest data about the motor performance to optimize the motor 
controller performance.  We could also add measurement modes where the controller 
automatically steps through different parameters and logs and outputs serial data to a computer. 
An automatic logger would greatly simplify characterizing the motor performance. 
 

On a similar note, we want to write a flexible telemetry manager system for streaming 
various important state machine inputs (like modes, sensor readings, motor currents, positions 
and velocities) to a receiver, likely our UART interface back to the computer.  This telemetry 
information would be broadcast repeatedly, allowing the operator to easily monitor the 
performance of the controller in real time.  The CMOD A7 board does in fact have some 
non-volatile memory on board, which we may eventually want to use to implement some sort of 
telemetry cache which we can read out of on startup. 
 

One feature we would like to add relatively soon is to start utilizing other signals from the 
inverter. Currently we are ignoring many of the signals coming from the inverter, as they were 
not critical for functionality of the controller. The bus voltage feedback line is likely going to be 
implemented soon here so that our control loop can scale the SVPWM voltages appropriately. 
This will require writing a more flexible SPI interface, for use with sampling all of the low speed 
ADC’s in an iterative fashion.  
 

From a more hardware perspective, we would like to eventually improve the inverter 
itself. The Prius inverter isn’t particularly impressive in terms of switching frequency or high 
speed performance. It’s gate driver board doesn’t realistically allow for switching much faster 
than ~20khz, and we think it would be a fun and interesting task to try and design a more 
compact inverter module which is able to perform up past 100khz, potentially making use of 
GaNFETs or other new technologies. Being able to control low inductance motors by making 
use of extremely high speed switching would be a great application for our hardware 
implementation of Field Oriented Control, because of the low latency of our control loop. 
 
 

Appendix - Schematic: 
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